Forest Structure Characterization using UAVSAR PollnSAR and Tomography

Maxim Neumann

UAVSAR Team: Scott Hensley, Marco Lavalle, Razi Ahmed, Thierry Michel, Ron Muellerschoen, . . .

Jet Propulsion Laboratory, California Institue of Technology

UAVSAR Workshop 03/27/2012 – Pasadena

Polarimetry

Physics: dielectric and geometric properties

Polarimetric Interferometry

Interferometry

Elevation and coherence of scattering center Volumetric and temporal properties

Tomography

3D scene reconstruction

PolInSAR Intro

- Multi-layer model: $\mathbf{T} = \sum \mathbf{T}_i$
- Possible layer separation due to
 - vertical structure
 - temporal behavior
 - polarimetric characteristics
- Every medium can be characterized with $i \rightarrow \infty \rightarrow$ unpractical!
- Simplest cases: single layer &
 2-layer models.

Coherence Unitary Circle (CUC)

 \approx

© 2013 California Institute of Technology. Government sponsorship acknowledged.

Volume

Ground

 φ_0

Multi-pol vertical profile

Pha

AR

Assumptions:

- Ground and volume components not correlated
- Polarimetric stationarity
- No refraction effects and no differential extinction

HH W HL

- Volume and ground components homogeneous

Model: Ground + Volume Layers

$$\mathbf{T}_6 = egin{bmatrix} \mathbf{T} & \mathbf{\Omega} \ \mathbf{\Omega}^\dagger & \mathbf{T} \end{bmatrix} egin{cases} \mathbf{T} = \mathbf{T}_g + \mathbf{T}_v \ \mathbf{\Omega} = \gamma_g \mathbf{T}_g + \gamma_v \mathbf{T}_v \end{cases}$$

$$= \mathbf{R}_g \otimes \mathbf{T}_g + \mathbf{R}_v \otimes \mathbf{T}_v \text{ with } \mathbf{R}_{g/v} = \begin{bmatrix} 1 & \gamma_{g/v} \\ \gamma_{g/v}^* & 1 \end{bmatrix}$$

 T_g/T_v : ground and volume PolSAR cov matrices γ_g/γ_v : ground and volume InSAR coherences

Interferometric coherence model

 $\gamma \approx \gamma_{sys} \gamma_{geom} \gamma_z \gamma_{temp}$

$$\gamma_{z} = e^{i\phi_{0}} \int f_{0}(z) e^{ik_{z}z} dz, \ f_{0}(z) = \frac{e^{\frac{2\sigma}{\cos\theta_{0}}z}}{\int e^{\frac{2\sigma}{\cos\theta_{0}}z'} dz'}$$

 \approx

Pha:

AR

Orientation Randomness

General formulation:

$$\mathbf{T} = \mathbf{R}_{T(2\widetilde{\psi})} \begin{bmatrix} 1 & g_c \delta^* & 0\\ g_c \delta & \frac{(1+g)}{2} |\delta|^2 & 0\\ 0 & 0 & \frac{(1-g)}{2} |\delta|^2 \end{bmatrix} \mathbf{R}_{T(2\widetilde{\psi})}^{\mathrm{T}}$$

$$\begin{split} \mathbf{R}_{T(2\widetilde{\psi})} &: \text{Rotation to main orientation} \\ g &= \frac{I_2(\kappa)}{I_0(\kappa)}, \ g_c = \frac{I_1(\kappa)}{I_0(\kappa)}, \ \tau = I_0(\kappa)e^{-\kappa} \end{split}$$

* assumption: δ and τ uncorrelated 2013 California Institute of Technology. Government sponsorship acknowledged.

Orientation Randomness

Circular normal distribution of orientation angles:

$$p(\psi|\widetilde{\psi},\kappa_{\psi}) = \frac{e^{\kappa_{\psi}\cos(2(\psi-\widetilde{\psi}))}}{\pi I_0(\kappa_{\psi})} \quad \tau = \frac{\int p(\psi-\widetilde{\psi})d\psi}{\pi \max p(\psi)} = I_0(\kappa)e^{-\kappa}$$

 $\widetilde{\psi}$: main orientation, κ : degree of concentration

2-Layer PolInSAR Vegetation Model

- SAR Interferometry and SAR Polarimetry:
 - Largely developed at JPL (15-25y ago)
- SAR Tomography:
 - Mainly in Europe (last 10-15y)
 - Initial demonstrations: 10 years ago using airborne (ESAR) and space-borne sensors (ERS-1/2)
 - Potentially high resolution
 - Independent of solar illumination
 - High coverage
- Tomography offers the capability to sense vertically distributed information, e.g., vegetation and ice structure or deformation signals.
 - Extension of 2d SAR imaging to 3d and 4d (space-time).
 - Formation of an additional synthetic aperture in elevation.

Interpreting Polarimetric SAR Tomography over forests:

- vertical distribution of backscattered energy in dependence of polarization

Experimental Results

Harvard Forest JPL's UAVSAR L-band 13 tracks

Spatial baselines:5m – 125mTemporal separation:30 min – 11 days

JPL's UAVSAR sensor – Harvard Forest dataset – L-band

PolInSAR Height Estimate

JPL's UAVSAR sensor – Harvard Forest dataset – L-band

Overlaying PolInSAR Estimate and Pol-Tomogram

- Krycklan Catchment
- Northern Sweden Boreal forest
- BioSAR II campaign 2008
- ESA-DLR-FOI-SLU
- DLR's E-SAR sensor
- ascending/descending paths
- 6 tracks, respectively
- L- and P-bands
- 2*27 forest plots

Experimental Results

- Potential of Polarimetric SAR Interferometry and SAR Tomography for
 - vertical forest structure characterization
 - vegetation and scattering type characterization
- Observations from data:
 - No definitive model which would work for all forests
 - Temporal decorrelation potentially large error source
 - Strong baseline choice dependence
 - Multiple baselines improve the estimation (*requires accurate processing & calibration)
 - Performance depends on forest and tree species type
 - L-band: no ground for dense forests, slopes, insufficient double-bounce
- Challenges:
 - Data processing and calibration
 - Long baselines processing for improved height resolution
 - Error analysis

Forest Structure Characterization using UAVSAR PolInSAR and Tomography

Thank you for your attention!

UAVSAR Workshop – JPL, Pasadena – 03/27/2013

• Example scenario:

hv=20m, extinction=0.3dB/m, ground phase=0 degree

SNR: [9dB, 15dB], Temporal Brownian motion: 24h with sdev=2mm/h

Thermal decorrelation effects:

Temporal decorrelation effects:

A-posteriori cohset PDF's and Confidence regions for 49 and 100 looks:

Confidence levels: 68%, 95.5%, 99.7%, 99.994%

- Example PolInSAR height estimation errors due to model simplification. Induced non-modeled coherence magnitude and phase offsets or variabilities, and the resulting height estimation errors, if not compensated.
- Model: simple RVoG
- Example scenario:

hv=25m, incidence angle=45 degrees,

kz=0.15, extinction=0dB.

Error Source	$ \Delta \gamma $	$\Delta rg \gamma$	$\Delta h_v(\gamma)$	$\Delta h_v(\arg \gamma)$
γ_{temp} of 0.8	-0.10	0°	$3.12\mathrm{m}$	$0\mathrm{m}$
$\sigma_{\gamma_{temp}}$ of 50%	± 0.05	0°	$\pm 1.58m$	$0\mathrm{m}$
$\operatorname{Min}(c_g)$ of 15%	-0.10	-20.3°	$2.94\mathrm{m}$	-4.72m
Canopy 75%	0.19	13.4°	-6.25m	$3.12\mathrm{m}$
Extinction $0.2 dB/m$	0.07	35.4°	-2.16m	$8.23\mathrm{m}$
$\sigma_{\phi}, \sigma_{\gamma} \ (\# \text{ looks } = 25)$	± 0.10	$\pm 13.7^{\circ}$	$\pm 3.26 \mathrm{m}$	$\pm 3.19 \mathrm{m}$
$\sigma_{\phi}, \sigma_{\gamma} \ (\# \text{ looks =} 100)$	± 0.05	$\pm 6.85^{\circ}$	$\pm 1.61 \mathrm{m}$	$\pm 1.60 \mathrm{m}$