Characterizing the temporal variability of L-band backscatter using dense UAVSAR time-series in preparation for the NISAR mission

BACKGROUND

The National Aeronautics and Space Administration (NASA) and the Indian Space Research Organisation (ISRO) are developing the NASA-ISRO SAR (NISAR), a synthetic aperture radar (SAR) mission, to be launched in 2021, to map Earth's surface every 12 days.

The default L-band (24 cm wavelength) radar mode of NISAR will collect approximately 60 dual-polarized (HH/HV) images per year globally with spatial resolution finer than 10 m, providing an unprecedented view of the Earth's surface from space. NISAR requirements include measuring above-ground woody biomass up to 100 Mg/ha with 20 Mg/ha accuracy from L-band backscatter

In preparation for the NISAR mission, we are using the NASA/JPL UAVSAR L-band airborne system as a testbed for the development and assessment of ecosystem algorithms. UAVSAR provides quad-polarimetric imagery with low noise (< 50 dB) and high resolution (1-2 m), and has the ability to fly repeated flight paths with great accuracy.

The objective of this study is to use dense time-series of UAVSAR imagery to characterize the temporal evolution of L-band backscatter

[1] The NASA-ISRO SAR Mission (NISAR), nisar.jpl.nasa.gov [2] S. Hensley et al., "The UAVSAR instrument: Description and first results," in Proc. IEEE RADAR, May 2008, pp. 1–6.

MATERIALS

Marco Lavalle, Gustavo X. H. Shiroma, Abby Lee and Paul Rosen Jet Propulsion Laboratory, California Institute of Technology

Acknowledgments: The authors would like to thank the UAVSAR team at JPL for acquiring, processing and calibrating the UAVSAR PolSAR data and Dr. Cathleen Jones for collecting the time-series dataset for deformation studies. This work was supported by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

